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(i) True. We need to check three properties: 1) e € H. This is true because H is a subgroup of K and K is a
subgroup of G and hence, K inherits the identity of G and H inherits the same identity from K. 2) Since H
is a subgroup, H is closed under its binary operation and 3) likewise, since H is a subgroup, H is closed under
taking inverses.

(ii) True. Just use the same identity of the group for the subgroup and all three subgroup conditions follows trivially
from the definition of group.

) False. Since e ¢ G, i.e., there is no identity.
) False. Let S5 = {id, (1 2),(1 3),(2 3),(1 2 3),(1 32)}. The order of S3 is 6, but there is no element of order 6.
(v) True. Since the order of S,, is n!, we can just apply Lagrange’s Theorem.
) False. It might be possible for the intersection to be empty.
)

True. Since the intersection of any subgroups is a subgroup. Moreover, every subgroup of a cyclic subgroup is
cyclic.

(viii) False. Let X = {1} € Z. Then, (-1) =7

(ix) True id € F, since the identity moves a finite number of elements (moves zero elements). If a, 8 € F, then
ao f € F, since the composition will also move a finite number of elements. If a € F, then the inverse will
move the same number of elements which means that a~! € F.

(x) True. By Lagrange’s theorem, a proper subgroup H of S5 is such that |H|||S5| = 6. Hence, |H| = 1,2 or 3. In
exercise 2.70 (i) I show that every group of prime order is cyclic.

(xi) False. The counterexample can be found on page 148, the subgroup V of Sg where each element has order 2 so
that there is no generator and hence, V' is not cyclic.

(i) Let G be a group and H be a subgroup of G. Let g € G. By definition, gH = {gh : h € H}. In particular, since
H is a subgroup, e € H and thus, g-e =g € gH. If we consider a1 H,a2H, ...,a; H to be all the distinct cosets
of H in G, then there exists ¢ such that gH = a;H, in particular take g = a;.

(ii) Let c € aHNbH. Then ¢ € aH and ¢ € bH. By definition of left cosets, ¢ = ahy for some hy € H and ¢ = bhy
for some hy € H. Hence, ah; = bhy. Operating by h2_1 on both sides we get that ah1h2_1 =b. Let hsy = h1h2_1,
then we can write b = ahs where hg € H. Therefore, b € aH. A similar arguments shows that a € bH and
hence, aH = bH. Hence, if i # j we must have that o;H Na;H = (

Let G=2/6 = ({0,1,2,3,4,5},+,0). Let H = {0,4,2} and K = {0,3}. Both H and K are subgroups of G since,
l)e=0€ H,K. 2)for H: 4+4=8=2 (mod 6) and 4+2=2+4 =6 =0 (mod 6) (the other combinations being
trivial); for K: 3+ 3 =6 = 0 (mod 6) (the other combinations being trivial). Finally 3) for H: the inverse of 4 is 2
and for K: the inverse of 3 is itself.

We can see that H U K = {0,2,3,4} is not a subgroup since the operation is not closed: take 2,3 € H U K,
thesum 2+3=5¢ HUK.

By proposition 2.76 we know that H N K is a subgroup of H and a subgroup of K. Therefore, by Lagrange’s theorem,
|H N K| divides |H| and also divides |K|. But |H| and |K| are relatively prime and so the only common divisor is
one. In particular this means that |H N K| has only one element, and since this is a group it has to contain the
identity, hence H N K = {e}

Let G be a group of order 4. If there exists a € G such that (a) = G, then G is cyclic and we are done. Otherwise,
let a € G. Consider (a) as a proper subgroup of G. Since |G| = 4, by Lagrange’s theorem it must be the case that
| {(a) | divides |G| and hence, | {a)| =2 or | (a) | = 1. If | (a) | = 2 then by definition a®> = 1. If | (a)| = 1 then a = 1
which implies that a2 = 1. In either case we obtain the result.

Finally, if G is cyclic then it is abelian. If the preceding result holds then by exercise 2.44 G is abelian.

(i) By definition: ((12)) = {id,(12)}. Let « € S3 be a = (41). Then (41)((12)) = {(41),(241)} #
((12)(41)={(41),(142)}
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Let f:aH — Ha™! be defined as f(aH) = Ha™!'. If we show that this is a bijection, then we have showed that
the number of left cosets and right cosets is the same.

Suppose that g1 H = g2H. Then, gy = g1 - e € g1H = goH, so g1 = g2 - h for some h € H. Now we compute,
f(giH)=Hgy' = h7'g;' = f(g2H). Hence, f is injective.

Now, let Hb be a right coset. Since H is a group, b has a unique inverse b=! such that f(b=*H) = H(b=1)~! = Hb.
This means that f is surjective.

Since f is both injective and surjective, it is a bijection. In particular this means that the sets of left and right
cosets have the same number of elements.

True by definition.

False since the operation of the group R* is not +.

True. The inclusion f : Z — R is defined as f(z) = z. Hence, for every 21,20 € Z, f(z1 + 22) = 21 + 22 =
f(z1) + f(22)

True. Just set f(0) = (1). Then, f(0+0) = f(0) = (1) = (1) o (1) = £(0) o f(0)

False. Consider Z/6 and Ss, both of order 6 and not isomorphic (see 2.70, (ii)).

True. Any group of primer order is cyclic (see 2.70 (i)). Let G; and G2 be two groups of prime order, then
f:G1— Gy given by f(a') = b® is an isomorphism.

Claim: a group G is not abelian only in case that |G| > 4. Proof: to be non-abelian means that there exists
xz,y € G such that zy # yx. Since G is a group, we know that the identity e is in G. It is obvious that the identity
respects commutativity since xe = ex = x and ey = ye = y. Hence, we need distinct z,y such that operating
them in different order results in two different elements xy # yz. In sum we need at least e, z,y, zy, yr € G, all
distinct, in order to have a non-abelian group.

Now we need to analyze the case where G is a group such that |G| = 5. To do this I will show the follow-
ing: Claim: a group of prime order is cyclic. Once we know that the group is cyclic we can conclude that it is
abelian. Proof: Let G be a group such that |G| = p where p is prime. Let a € G. Consider the subgroup (a).
By Lagrange’s theorem, |(a) | divides |G|. Since |G| is prime, the only divisors of |G| are 1 and p. So either
[(a)| =1or |{a)| =p. If |(a)| =1 then (a) = {e}. Otherwise, | (a)| = p which implies that (a) = G so G is
cyclic.

Using the above claim we can conclude that since 5 is a prime number, a group G of order 5 is cyclic. A
cyclic group is abelian so G is abelian. (Note that this same argument applies to groups of order 1,2 and 3).
This shows that a group of order less than 6 is abelian.

Consider the two groups: Z/6 and Ss3, both of order 6. Claim: these groups are non-isomorphic. Proof: Suppose
that there exists an isomorphism f : S3 +— Z/6. This isomorphism must preserve the identity element, i.e.,
Flid) = 0. T we take 0 = f(id) = f(12)) = f((12)0(12)) = F((12)) + (12)) = 2/((12)) = 0 —
2f((12)) = f((12)) =0OR f((12)) = 3. Therefore, f((12)) = 3 since it cannot be the identity. If we
perform the same calculations but with (1 3) we will also obtain that f((1 3)) = 3 so that f is not injective, a
contradiction. Therefore, there exists no such isomorphism f.




