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(2.52) (i) True. We need to check three properties: 1) e ∈ H. This is true because H is a subgroup of K and K is a
subgroup of G and hence, K inherits the identity of G and H inherits the same identity from K. 2) Since H
is a subgroup, H is closed under its binary operation and 3) likewise, since H is a subgroup, H is closed under
taking inverses.

(ii) True. Just use the same identity of the group for the subgroup and all three subgroup conditions follows trivially
from the definition of group.

(iii) False. Since e /∈ G, i.e., there is no identity.

(iv) False. Let S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. The order of S3 is 6, but there is no element of order 6.

(v) True. Since the order of Sn is n!, we can just apply Lagrange’s Theorem.

(vi) False. It might be possible for the intersection to be empty.

(vii) True. Since the intersection of any subgroups is a subgroup. Moreover, every subgroup of a cyclic subgroup is
cyclic.

(viii) False. Let X = {1} ∈ Z. Then, 〈−1〉 = Z
(ix) True id ∈ F , since the identity moves a finite number of elements (moves zero elements). If α, β ∈ F , then

α ◦ β ∈ F , since the composition will also move a finite number of elements. If α ∈ F , then the inverse will
move the same number of elements which means that α−1 ∈ F .

(x) True. By Lagrange’s theorem, a proper subgroup H of S3 is such that |H|||S3| = 6. Hence, |H| = 1, 2 or 3. In
exercise 2.70 (i) I show that every group of prime order is cyclic.

(xi) False. The counterexample can be found on page 148, the subgroup V of S6 where each element has order 2 so
that there is no generator and hence, V is not cyclic.

(2.53) (i) Let G be a group and H be a subgroup of G. Let g ∈ G. By definition, gH = {gh : h ∈ H}. In particular, since
H is a subgroup, e ∈ H and thus, g · e = g ∈ gH. If we consider a1H, a2H, ..., atH to be all the distinct cosets
of H in G, then there exists i such that gH = aiH, in particular take g = ai.

(ii) Let c ∈ aH ∩ bH. Then c ∈ aH and c ∈ bH. By definition of left cosets, c = ah1 for some h1 ∈ H and c = bh2
for some h2 ∈ H. Hence, ah1 = bh2. Operating by h−1

2 on both sides we get that ah1h−1
2 = b. Let h3 = h1h

−1
2 ,

then we can write b = ah3 where h3 ∈ H. Therefore, b ∈ aH. A similar arguments shows that a ∈ bH and
hence, aH = bH. Hence, if i 6= j we must have that aiH ∩ ajH = ∅

(2.55) Let G = Z/6 = ({0, 1, 2, 3, 4, 5},+, 0). Let H = {0, 4, 2} and K = {0, 3}. Both H and K are subgroups of G since,
1) e = 0 ∈ H,K. 2) for H: 4 + 4 = 8 ≡ 2 (mod 6) and 4 + 2 = 2 + 4 = 6 ≡ 0 (mod 6) (the other combinations being
trivial); for K: 3 + 3 = 6 ≡ 0 (mod 6) (the other combinations being trivial). Finally 3) for H: the inverse of 4 is 2
and for K: the inverse of 3 is itself.

We can see that H ∪ K = {0, 2, 3, 4} is not a subgroup since the operation is not closed: take 2, 3 ∈ H ∪ K,
the sum 2 + 3 = 5 /∈ H ∪K.

(2.57) By proposition 2.76 we know that H∩K is a subgroup of H and a subgroup of K. Therefore, by Lagrange’s theorem,
|H ∩K| divides |H| and also divides |K|. But |H| and |K| are relatively prime and so the only common divisor is
one. In particular this means that |H ∩ K| has only one element, and since this is a group it has to contain the
identity, hence H ∩K = {e}

(2.59) Let G be a group of order 4. If there exists a ∈ G such that 〈a〉 = G, then G is cyclic and we are done. Otherwise,
let a ∈ G. Consider 〈a〉 as a proper subgroup of G. Since |G| = 4, by Lagrange’s theorem it must be the case that
| 〈a〉 | divides |G| and hence, | 〈a〉 | = 2 or | 〈a〉 | = 1. If | 〈a〉 | = 2 then by definition a2 = 1. If | 〈a〉 | = 1 then a = 1
which implies that a2 = 1. In either case we obtain the result.
Finally, if G is cyclic then it is abelian. If the preceding result holds then by exercise 2.44 G is abelian.

(2.63) (i) By definition: 〈(1 2)〉 = {id, (1 2)}. Let α ∈ S3 be α = (4 1). Then (4 1) 〈(1 2)〉 = {(4 1), (2 4 1)} 6=
〈(1 2)〉 (4 1) = {(4 1), (1 4 2)}
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(ii) Let f : aH 7→ Ha−1 be defined as f(aH) = Ha−1. If we show that this is a bijection, then we have showed that
the number of left cosets and right cosets is the same.
Suppose that g1H = g2H. Then, g1 = g1 · e ∈ g1H = g2H, so g1 = g2 · h for some h ∈ H. Now we compute,
f(g1H) = Hg−1

1 = h−1g−1
2 = f(g2H). Hence, f is injective.

Now, letHb be a right coset. SinceH is a group, b has a unique inverse b−1 such that f(b−1H) = H(b−1)−1 = Hb.
This means that f is surjective.
Since f is both injective and surjective, it is a bijection. In particular this means that the sets of left and right
cosets have the same number of elements.

(2.64) (i) True by definition.

(ii) False since the operation of the group R× is not +.

(iii) True. The inclusion f : Z 7→ R is defined as f(z) = z. Hence, for every z1, z2 ∈ Z, f(z1 + z2) = z1 + z2 =
f(z1) + f(z2)

(iv) True. Just set f(0) = (1). Then, f(0 + 0) = f(0) = (1) = (1) ◦ (1) = f(0) ◦ f(0)
(v) False. Consider Z/6 and S3, both of order 6 and not isomorphic (see 2.70, (ii)).

(vi) True. Any group of primer order is cyclic (see 2.70 (i)). Let G1 and G2 be two groups of prime order, then
f : G1 7→ G2 given by f(ai) = bi is an isomorphism.

(2.70) (i) Claim: a group G is not abelian only in case that |G| > 4. Proof: to be non-abelian means that there exists
x, y ∈ G such that xy 6= yx. Since G is a group, we know that the identity e is in G. It is obvious that the identity
respects commutativity since xe = ex = x and ey = ye = y. Hence, we need distinct x, y such that operating
them in different order results in two different elements xy 6= yx. In sum we need at least e, x, y, xy, yx ∈ G, all
distinct, in order to have a non-abelian group.

Now we need to analyze the case where G is a group such that |G| = 5. To do this I will show the follow-
ing: Claim: a group of prime order is cyclic. Once we know that the group is cyclic we can conclude that it is
abelian. Proof: Let G be a group such that |G| = p where p is prime. Let a ∈ G. Consider the subgroup 〈a〉.
By Lagrange’s theorem, | 〈a〉 | divides |G|. Since |G| is prime, the only divisors of |G| are 1 and p. So either
| 〈a〉 | = 1 or | 〈a〉 | = p. If | 〈a〉 | = 1 then 〈a〉 = {e}. Otherwise, | 〈a〉 | = p which implies that 〈a〉 = G so G is
cyclic.

Using the above claim we can conclude that since 5 is a prime number, a group G of order 5 is cyclic. A
cyclic group is abelian so G is abelian. (Note that this same argument applies to groups of order 1,2 and 3).
This shows that a group of order less than 6 is abelian.

(ii) Consider the two groups: Z/6 and S3, both of order 6. Claim: these groups are non-isomorphic. Proof: Suppose
that there exists an isomorphism f : S3 7→ Z/6. This isomorphism must preserve the identity element, i.e.,
f(id) = 0. If we take 0 = f(id) = f((1 2)2) = f((1 2) ◦ (1 2)) = f((1 2)) + f((1 2)) = 2f((1 2)) ⇒ 0 =
2f((1 2)) ⇒ f((1 2)) = 0 OR f((1 2)) = 3. Therefore, f((1 2)) = 3 since it cannot be the identity. If we
perform the same calculations but with (1 3) we will also obtain that f((1 3)) = 3 so that f is not injective, a
contradiction. Therefore, there exists no such isomorphism f .
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